Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Cytotherapy ; 26(5): 498-505, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38372680

RESUMEN

BACKGROUND AIMS: Mesenchymal stem/stromal cells (MSCs) are defined as culture-expanded populations, and although these cells recapitulate many properties of bone marrow (BM) resident skeletal stem/progenitor cells, few studies have directly compared these populations to evaluate how culture adaptation and expansion impact critical quality attributes. METHODS: We analyzed by RNA sequencing Lin-SCA1+ MSCs enriched from BM by immunodepletion (ID) and after subsequent culture expansion (Ex) and Lin-LEPR+ MSCs sorted (S) directly from BM. Pairwise comparisons were used to identify differentially expressed genes (DEGs) between populations, and gene set enrichment analysis was employed to identify biological pathways/processes unique to each population. K-means cluster analysis resolved isolation status-dependent changes in transcription in pseudotime. RESULTS: Hierarchical clustering segregated populations by isolation process, and principal component analysis identified transcripts related to vasculature development, ossification and inflammatory/cytokine signaling as key drivers of population variance. Pairwise comparisons identified 3849 DEGs in ID versus S BM-MSCs mapping to Gene Ontology (GO) terms related to immune and metabolic processes and 334 DEGs in Ex versus ID BM-MSCs mapping to GO terms related to tissue development, cell growth and replication and organelle organization. K-means cluster analysis revealed significant differences in transcripts encoding stemness and differentiation markers, extracellular matrix structural constituents and remodeling enzymes and paracrine-acting factors between populations. CONCLUSIONS: These comparative analyses reveal significant differences in gene expression signatures between BM resident and culture-expanded MSCs, thereby providing new insight into how culture adaptation/expansion endows the latter with unique quality attributes.


Asunto(s)
Células de la Médula Ósea , Perfilación de la Expresión Génica , Células Madre Mesenquimatosas , Transcriptoma , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Animales , Ratones , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Transcriptoma/genética , Diferenciación Celular/genética , Células Cultivadas , Proliferación Celular/genética , Ratones Endogámicos C57BL
2.
Sci Adv ; 9(45): eadi2387, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37948519

RESUMEN

Mesenchymal stem/stromal cells (MSCs) have been evaluated in >1500 clinical trials, but outcomes remain suboptimal because of knowledge gaps in quality attributes that confer potency. We show that TWIST1 directly represses TSG6 expression that TWIST1 and TSG6 are inversely correlated across bone marrow-derived MSC (BM-MSC) donor cohorts and predict interdonor differences in their proangiogenic, anti-inflammatory, and immune suppressive activity in vitro and in sterile inflammation and autoimmune type 1 diabetes preclinical models. Transcript profiling of TWIST1HiTSG6Low versus TWISTLowTSG6Hi BM-MSCs revealed previously unidentified roles for TWIST1/TSG6 in regulating cellular oxidative stress and TGF-ß2 in modulating TSG6 expression and anti-inflammatory activity. TWIST1 and TSG6 levels also correlate to donor stature and predict differences in iPSC-derived MSC quality attributes. These results validate TWIST1 and TSG6 as biomarkers that predict interdonor differences in potency across laboratories and assay platforms, thereby providing a means to manufacture MSC products tailored to specific diseases.


Asunto(s)
Células Madre Mesenquimatosas , Humanos , Antiinflamatorios/farmacología , Biomarcadores/metabolismo , Células de la Médula Ósea/metabolismo , Diferenciación Celular , Factores Inmunológicos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína 1 Relacionada con Twist/genética , Proteína 1 Relacionada con Twist/metabolismo
3.
Front Cell Dev Biol ; 11: 1294438, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965574

RESUMEN

Introduction: In the rapidly aging U.S. population, age-induced bone loss (senile osteoporosis) represents a major public health concern that is associated with a significant increased risk for low trauma fragility fractures, which are debilitating to patients, cause significant morbidity and mortality, and are costly to treat and manage. While various treatments exist to slow bone loss in osteoporosis patients, these suffer from poor tolerability and label restrictions that limit their overall effectiveness. Over the past decade, skeletal stem/progenitor cells (SSPCs), which are the main precursor of osteoblasts and adipocytes in adult bone marrow (BM), have emerged as important players in osteoporosis. Methods: Age-induced skeletal pathology was quantified in elderly (24-month-old) vs. mature (3-month-old) mice by micro-CT and changes in SSPC abundance in the BM of these mice was quantified by fluorescence-activated cell sorting (FACS). SSPCs from elderly vs. mature mice were also analyzed by RNA-Seq to identify differentially expressed genes (DEGs), and gain and loss-of-function studies were performed in human BM-derived mesenchymal stromal cells (BM-MSCs) to assess A2M function. Results: Elderly mice were shown to exhibit significant age-induced skeletal pathology, which correlated with a significant increase in SSPC abundance in BM. RNA-seq analysis identified alpha-2-macroglobulin (A2M), a pan-protease inhibitor that also binds inflammatory cytokines, as one of the most downregulated transcripts in SSPCs isolated from the BM of elderly vs. mature mice, and silencing of A2M expression in human BM-MSCs induced their proliferation and skewed their lineage bifurcation toward adipogenesis at the expense of osteogenesis thereby recapitulating critical aspects of age-induced stem cell dysfunction. Conclusion: These findings identify A2M as a novel disease modifying protein in osteoporosis, downregulation of which in bone marrow promotes SSPC dysfunction and imbalances in skeletal homeostasis.

4.
SLAS Discov ; 28(8): 402-409, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37839522

RESUMEN

MicroRNAs (miRNAs) play a crucial role in post-transcriptional gene regulation and have been implicated in various diseases, including cancers and lung disease. In recent years, Graph Neural Networks (GNNs) have emerged as powerful tools for analyzing graph-structured data, making them well-suited for the analysis of molecular structures. In this work, we explore the application of GNNs in ligand-based drug screening for small molecules targeting miR-21. By representing a known dataset of small molecules targeting miR-21 as graphs, GNNs can learn complex relationships between their structures and activities, enabling the prediction of potential miRNA-targeting small molecules by capturing the structural features and similarity between known miRNA-targeting compounds. The use of GNNs in miRNA-targeting drug screening holds promise for the discovery of novel therapeutic agents and provides a computational framework for efficient screening of large chemical libraries.


Asunto(s)
MicroARNs , Redes Neurales de la Computación , MicroARNs/genética , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/farmacología , Ligandos
5.
Stem Cells ; 41(12): 1185-1200, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-37665974

RESUMEN

Despite extensive clinical testing, mesenchymal stem/stromal cell (MSC)-based therapies continue to underperform with respect to efficacy, which reflects the paucity of biomarkers that predict potency prior to patient administration. Previously, we reported that TWIST1 predicts inter-donor differences in MSC quality attributes that confer potency. To define the full spectrum of TWIST1 activity in MSCs, the present work employed integrated omics-based profiling to identify a high-confidence set of TWIST1 targets, which mapped to cellular processes related to ECM structure/organization, skeletal and circulatory system development, interferon gamma signaling, and inflammation. These targets are implicated in contributing to both stem/progenitor and paracrine activities of MSCs indicating these processes are linked mechanistically in a TWIST1-dependent manner. Targets implicated in extracellular matrix dynamics further implicate TWIST1 in modulating cellular responses to niche remodeling. Novel TWIST1-regulated genes identified herein may be prioritized for future mechanistic and functional studies.


Asunto(s)
Células Madre Mesenquimatosas , Humanos , Células Madre Mesenquimatosas/metabolismo , Biomarcadores/metabolismo , Matriz Extracelular/metabolismo , Unión Proteica , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína 1 Relacionada con Twist/genética , Proteína 1 Relacionada con Twist/metabolismo
6.
Stem Cells ; 41(5): 444-452, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36891977

RESUMEN

Mesenchymal stem/stromal cell (MSC)-based therapies have been evaluated in over 1500 human clinical trials for a diverse array of disease indication, but outcomes remain unpredictable due to knowledge gaps in the quality attributes that confer therapeutic potency onto cells and their mode of action in vivo. Based on accumulated evidence from pre-clinical models, MSCs exert therapeutic effects by repressing inflammatory and immune-mediated response via paracrine action following reprogramming by the host injury microenvironment, and by polarization of tissue resident macrophages following phagocytosis to an alternatively activated (M2) state. An important tenet of this existing paradigm is that well-established stem/progenitor functions of MSCs are independent of paracrine function and dispensable for their anti-inflammatory and immune suppressive functions. Herein, we review evidence that stem/progenitor and paracrine functions of MSCs are mechanistically linked and organized hierarchically and describe how this link may be exploited to develop metrics that predict MSC potency across a spectrum of activities and regenerative medicine applications.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Humanos , Células Madre Mesenquimatosas/fisiología , Medicina Regenerativa
7.
Cytotherapy ; 25(4): 362-368, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36481320

RESUMEN

BACKGROUND AIMS: Fanconi anemia (FA) is an inherited bone marrow failure syndrome caused by defects in the repair of DNA inter-strand crosslinks and manifests as aplastic anemia, myelodysplastic syndrome and acute myeloid leukemia. FA also causes defects in mesenchymal stromal cell (MSC) function, but how different FA gene mutations alter function remains understudied. METHODS: We compared the growth, differentiation and transcript profile of a single MSC isolate from an asymptomatic patient with FA with a FANCG nonsense mutation who underwent hematopoietic stem cell transplantation 10 years prior to that from a representative healthy donor (HD). RESULTS: We show that FANCG-/- MSCs exhibit rapid onset of growth cessation, skewed bi-lineage differentiation in favor of adipogenesis and increased cellular oxidate stress consistent with an aging-like phenotype. Transcript profiling identified pathways related to cell growth, senescence, cellular stress responses and DNA replication/repair as over-represented in FANCG-/- MSC, and real-time polymerase chain reaction confirmed these MSCs expressed reduced levels of transcripts implicated in cell growth (TWIST1, FGFR2v7-8) and osteogenesis (TWIST1, RUNX2) and increased levels of transcripts regulating adipogenesis (GPR116) and insulin signaling. They also expressed reduced levels of mRNAs implicated in HSC self-maintenance and homing (KITLG, HGF, GDNF, PGF, CFB, IL-1B and CSF1) and elevated levels of those implicated in myelodysplasia (IL-6, GDF15). CONCLUSIONS: Together, these findings demonstrate how inactivation of FANCG impacts MSC behavior, which parallels observed defects in osteogenesis, HSC depletion and leukemic blast formation seen in patients with FA.


Asunto(s)
Anemia de Fanconi , Células Madre Mesenquimatosas , Síndromes Mielodisplásicos , Humanos , Anemia de Fanconi/genética , Anemia de Fanconi/terapia , Anemia de Fanconi/metabolismo , Síndromes Mielodisplásicos/genética , Hematopoyesis/genética , Fenotipo , Células Madre Mesenquimatosas/metabolismo , Células del Estroma/metabolismo
8.
Expert Opin Drug Discov ; 18(2): 135-147, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35934990

RESUMEN

INTRODUCTION: Historically, therapeutic treatment of disease has been restricted to targeting proteins. Of the approximately 20,000 translated human proteins, approximately 1600 are associated with diseases. Strikingly, less than 15% of disease-associated proteins are predicted or known to be 'druggable.' While the concept and narrative of protein druggability continue to evolve with the development of novel technological and pharmacological advances, most of the human proteome remains undrugged. Recent genomic studies indicate that less than 2% of the human genome encodes for proteins, and while as much as 75% of the genome is transcribed, RNA has largely been ignored as a druggable target for therapeutic interventions. AREAS COVERED: This review delineates the theory and techniques involved in the development of small molecule inhibitors of RNAs from brute force, high-throughput screening technologies to de novo molecular design using computational machine and deep learning. We will also highlight the potential pitfalls and limitations of targeting RNA with small molecules. EXPERT OPINION: Although significant advances have recently been made in developing systems to identify small molecule inhibitors of RNAs, many challenges remain. Focusing on RNA structure and ligand binding sites may help bring drugging RNA in line with traditional protein drug targeting.


Asunto(s)
MicroARNs , Humanos , Proteínas/metabolismo , Sitios de Unión , Ensayos Analíticos de Alto Rendimiento
9.
Biology (Basel) ; 11(9)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36138736

RESUMEN

Obesity and type II diabetes mellitus (T2DM) are prominent risk factors for secondary osteoporosis due to the negative impacts of hyperglycemia and excessive body fat on bone metabolism. While the armamentarium of anti-diabetic drugs is expanding, their negative or unknown impacts on bone metabolism limits effectiveness. The inactivation of inositol hexakisphosphate kinase 1 (IP6K1) protects mice from high-fat-diet (HFD)-induced obesity (DIO) and insulin resistance by enhancing thermogenic energy expenditure, but the role of this kinase and the consequences of its inhibition on bone metabolism are unknown. To determine if IP6K1 inhibition in obese mice affords protection against obesity-induced metabolic derangements and bone loss, we maintained 2-month-old mice on a normal chow control diet or HFD under thermal neutral conditions for 100 d. Beginning on day 40, HFD-fed mice were divided into two groups and administered daily injections of vehicle or the pan-IP6K inhibitor TNP [N2-(m-Trifluorobenzyl), N6-(p-nitrobenzyl) purine]. HFD-fed mice developed obesity, hyperglycemia, hyperlipidemia, and secondary osteoporosis, while TNP administration protected mice against HFD-induced metabolic and lipid derangements and preserved bone mass, mineral density, and trabecular microarchitecture, which correlated with reduced serum leptin levels, reduced marrow adiposity, and preservation of marrow resident skeletal stem/progenitor cells (SSPCs). TNP also exhibited hypotensive activity, an unrealized benefit of the drug, and its prolonged administration had no adverse impacts on spermatogenesis. Together, these data indicate that the inhibition of IP6K1 using selective inhibitors, such as TNP, may provide an effective strategy to manage obesity and T2DM due to its bone sparing effects.

11.
Cytotherapy ; 24(1): 1, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34980363
13.
NPJ Microgravity ; 7(1): 49, 2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34836964

RESUMEN

Disuse osteoporosis (DO) results from mechanical unloading of weight-bearing bones and causes structural changes that compromise skeletal integrity, leading to increased fracture risk. Although bone loss in DO results from imbalances in osteoblast vs. osteoclast activity, its effects on skeletal stem/progenitor cells (SSCs) is indeterminate. We modeled DO in mice by 8 and 14 weeks of hindlimb unloading (HU) or 8 weeks of unloading followed by 8 weeks of recovery (HUR) and monitored impacts on animal physiology and behavior, metabolism, marrow adipose tissue (MAT) volume, bone density and micro-architecture, and bone marrow (BM) leptin and tyrosine hydroxylase (TH) protein expression, and correlated multi-systems impacts of HU and HUR with the transcript profiles of Lin-LEPR+ SSCs and mesenchymal stem cells (MSCs) purified from BM. Using this integrative approach, we demonstrate that prolonged HU induces muscle atrophy, progressive bone loss, and MAT accumulation that paralleled increases in BM but not systemic leptin levels, which remained low in lipodystrophic HU mice. HU also induced SSC quiescence and downregulated bone anabolic and neurogenic pathways, which paralleled increases in BM TH expression, but had minimal impacts on MSCs, indicating a lack of HU memory in culture-expanded populations. Although most impacts of HU were reversed by HUR, trabecular micro-architecture remained compromised and time-resolved changes in the SSC transcriptome identified various signaling pathways implicated in bone formation that were unresponsive to HUR. These findings indicate that HU-induced alterations to the SSC transcriptome that persist after reloading may contribute to poor bone recovery.

14.
Neurotherapeutics ; 18(3): 1939-1952, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34235636

RESUMEN

Mesenchymal stem cell (MSC)-based therapies are beneficial in models of perinatal stroke and hypoxia-ischemia. Mounting evidence suggests that in adult injury models, including stroke, MSC-derived small extracellular vesicles (MSC-sEV) contribute to the neuroprotective and regenerative effects of MSCs. Herein, we examined if MSC-sEV protect neonatal brain from stroke and if this effect is mediated via communication with microglia. MSC-sEV derived from bone marrow MSCs were characterized by size distribution (NanoSight™) and identity (protein markers). Studies in microglial cells isolated from the injured or contralateral cortex of postnatal day 9 (P9) mice subjected to a 3-h middle cerebral artery occlusion (tMCAO) and cultured (in vitro) revealed that uptake of fluorescently labeled MSC-sEV was significantly greater by microglia from the injured cortex vs. contralateral cortex. The cell-type-specific spatiotemporal distribution of MSC-sEV was also determined in vivo after tMCAO at P9. MSC-sEV administered at reperfusion, either by intracerebroventricular (ICV) or by intranasal (IN) routes, accumulated in the hemisphere ipsilateral to the occlusion, with differing spatial distribution 2 h, 18 h, and 72 h regardless of the administration route. By 72 h, MSC-sEV in the IN group was predominantly observed in Iba1+ cells with retracted processes and in GLUT1+ blood vessels in ischemic-reperfused regions. MSC-sEV presence in Iba1+ cells was sustained. MSC-sEV administration also significantly reduced injury volume 72 h after tMCAO in part via modulatory effects on microglial cells. Together, these data establish feasibility for MSC-sEV delivery to injured neonatal brain via a clinically relevant IN route, which affords protection during sub-acute injury phase.


Asunto(s)
Vesículas Extracelulares/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Microglía/metabolismo , Neuroprotección/fisiología , Accidente Cerebrovascular/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , Vesículas Extracelulares/trasplante , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Accidente Cerebrovascular/prevención & control
15.
Cytotherapy ; 23(12): 1060-1063, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34116944

RESUMEN

The Cellular Therapy Coding and Labeling Advisory Group of the International Council for Commonality in Blood Banking Automation and the International Society for Cell & Gene Therapy mesenchymal stromal cell (MSC) committee are providing specific recommendations on abbreviating tissue sources of culture-adapted MSCs. These recommendations include using abbreviations based on the ISBT 128 terminology model that specifies standard class names to distinguish cell types and tissue sources for culture-adapted MSCs. Thus, MSCs from bone marrow are MSC(M), MSCs from cord blood are MSC(CB), MSCs from adipose tissue are MSC(AT) and MSCs from Wharton's jelly are MSC(WJ). Additional recommendations include using these abbreviations through the full spectrum of pre-clinical, translational and clinical research for the development of culture-adapted MSC products. This does not apply to basic research focused on investigating the developmental origins, identity or functionalities of endogenous progenitor cells in different tissues. These recommendations will serve to harmonize nomenclature in describing research and development surrounding culture-adapted MSCs, many of which are destined for clinical and/or commercial translation. These recommendations will also serve to align research and development efforts on culture-adapted MSCs with other cell therapy products.


Asunto(s)
Células Madre Mesenquimatosas , Gelatina de Wharton , Automatización , Bancos de Sangre , Diferenciación Celular , Proliferación Celular , Tratamiento Basado en Trasplante de Células y Tejidos , Células Cultivadas , Consenso , Terapia Genética
16.
Cytotherapy ; 23(5): 367, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33934806
17.
Cytotherapy ; 23(5): 368-372, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33714704

RESUMEN

The International Society for Cell & Gene Therapy mesenchymal stromal cell (MSC) committee has been an interested observer of community interests in all matters related to MSC identity, mechanism of action, potency assessment and etymology, and it has regularly contributed to this conversation through a series of MSC pre-conferences and committee publications dealing with these matters. Arising from these reflections, the authors propose that an overlooked and potentially disruptive perspective is the impact of in vivo persistence on potency that is not predicted by surrogate cellular potency assays performed in vitro and how this translates to in vivo outcomes. Systemic delivery or extravascular implantation at sites removed from the affected organ system seems to be adequate in affecting clinical outcomes in many pre-clinical murine models of acute tissue injury and inflammatory pathology, including the recent European Medicines Agency-approved use of MSCs in Crohn-related fistular disease. The authors further propose that MSC viability and metabolic fitness likely dominate as a potency quality attribute, especially in recipients poised for salutary benefits as defined by emerging predictive biomarkers of response.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Animales , Tratamiento Basado en Trasplante de Células y Tejidos , Terapia Genética , Ratones
18.
Aging Cell ; 20(4): e13337, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33728821

RESUMEN

Aging drives progressive loss of the ability of tissues to recover from stress, partly through loss of somatic stem cell function and increased senescent burden. We demonstrate that bone marrow-derived mesenchymal stem cells (BM-MSCs) rapidly senescence and become dysfunctional in culture. Injection of BM-MSCs from young mice prolonged life span and health span, and conditioned media (CM) from young BM-MSCs rescued the function of aged stem cells and senescent fibroblasts. Extracellular vesicles (EVs) from young BM-MSC CM extended life span of Ercc1-/- mice similarly to injection of young BM-MSCs. Finally, treatment with EVs from MSCs generated from human ES cells reduced senescence in culture and in vivo, and improved health span. Thus, MSC EVs represent an effective and safe approach for conferring the therapeutic effects of adult stem cells, avoiding the risks of tumor development and donor cell rejection. These results demonstrate that MSC-derived EVs are highly effective senotherapeutics, slowing the progression of aging, and diseases driven by cellular senescence.


Asunto(s)
Envejecimiento/metabolismo , Senescencia Celular/fisiología , Vesículas Extracelulares/metabolismo , Células Madre Embrionarias Humanas/citología , Longevidad , Células Madre Mesenquimatosas/citología , Senoterapéuticos/metabolismo , Animales , Medios de Cultivo Condicionados/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , Fibroblastos/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Transducción de Señal/fisiología
19.
Nat Chem Biol ; 17(3): 307-316, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33510451

RESUMEN

Glucocorticoids display remarkable anti-inflammatory activity, but their use is limited by on-target adverse effects including insulin resistance and skeletal muscle atrophy. We used a chemical systems biology approach, ligand class analysis, to examine ligands designed to modulate glucocorticoid receptor activity through distinct structural mechanisms. These ligands displayed diverse activity profiles, providing the variance required to identify target genes and coregulator interactions that were highly predictive of their effects on myocyte glucose disposal and protein balance. Their anti-inflammatory effects were linked to glucose disposal but not muscle atrophy. This approach also predicted selective modulation in vivo, identifying compounds that were muscle-sparing or anabolic for protein balance and mitochondrial potential. Ligand class analysis defined the mechanistic links between the ligand-receptor interface and ligand-driven physiological outcomes, a general approach that can be applied to any ligand-regulated allosteric signaling system.


Asunto(s)
Antiinflamatorios/farmacología , Transportador de Glucosa de Tipo 4/genética , Atrofia Muscular/tratamiento farmacológico , Receptores de Glucocorticoides/química , Transducción de Señal/efectos de los fármacos , Células A549 , Regulación Alostérica , Animales , Antiinflamatorios/síntesis química , Línea Celular Transformada , Regulación de la Expresión Génica , Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Humanos , Lipopolisacáridos/administración & dosificación , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Atrofia Muscular/inducido químicamente , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Ratas , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Relación Estructura-Actividad
20.
Cytotherapy ; 22(11): 601, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33004266
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...